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Impingement of two-phase gas-liquid jet on a flat plate®

A theoretical analysis has been conducted of motion of a laminar liquid film induced by the impin-

gement of a gaseous jet with droplets on a flat surface. Splitting of the Newtonian liquid on the surface
is caused by the motion of gas a flowing under a pressure gradient over the liquid film. A theoretical
model of the phenomenon and a method of solving have been postulated. The obtained results have been
compared with the experimental data of other authors.

Nomenclature’

a coefficient, equation 2.5, P —  pressure,
Cy friction coeflicient, u - circumferential velocity,
C(r coefficient, equation 2.20, v - radial velocity,

nozzle diameter, w —  velocity in direction z,
g acceleration of gravity, 7 DR s cylindrical co-ordinates,
H height of nozzle suspension t < time,

over the surface, § —  liquid layer thickness,
Q volumetric flow rate I3 - dynamic viscosity,

of the liquid, P - liquid density,

unit volumetric flow T - wall shear stress,

rate of the liquid, Res = % Reynolds number.

Subscripts

i gas-liquid surface, o ~— ambient, characteristic quantity,
g gas, w — wall,
@ circumferential direction, s — stabilisation, circumferential direction,
r radial direction, 4+ ~ non-dimensional quantity.
z perpendicular direction to the surface,

Hnstitute of Fluid-Flow Machinery, Department of Thermodynamics and Heat Transfer,
Fiszera 14, 80-952 Gdaiisk
2The work was sponsored by a research project KBN 3 P404 034 07
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1. Introduction

Surface wetting by impinging two-phase liquid-gas jet is widely used for inten-
sive cooling. The cooling process is particularly intensive when the phenomenon
of film evaporation takes place. Such surface cooling can be found in heat exchan-
gers, chemical engineering apparatuses or electronic devices exposed to large loads
in high power computers. Splitting of the liquid formed from the droplets on the
wall has been scarcely investigated both experimentally and theoretically. Up to
date it has not found a complete explanation. There is no precise mathemati-
cal model of this phenomenon. Works known from the literature [1-2] give very
simplified models of the phenomenon. The interia forces are neglected. However,
this assumption is not justified as approaching the wall, the two-phase jet redu-
ces its kinetic energy at the same time increasing the pressure. At the point of
impingement the kinetic energy is equal to zero and the pressure has a maximum
value. From the stagnation point there is a merely radial gas flow. The pressure
decreases and the radial velocity of the gas increases. There is, therefore, a pres-
sure gradient in the radial direction. As a result of increased inertia the atomised
liquid phase suspended in the gas in the form of droplets deviates with respect
to gas streamlines and separates onto the wall. The droplets form a liquid film
which splits radially. In the vicinity of the stagnation point the flow is laminar. In
the work, laminar liquid films on the wall have been considered. The process of
splitting of the liquid impinging on a horizontal surface with a specified velocity
has been investigated theoretically and experimentally in [4,5]. The aim of the
present work is to investigate splitting of the liquid formed from the two-phase
jet impingement on a surface. The developed model draws on integral equations
of motion of the liquid film near the wall. Numerical calculations have also been
performed to illustrate the method.

2. Analysis

A flat surface impinged by a two-phase jet is presented together with a
co-ordinate system in Fig. 1. A cylindrical system of co-ordinates r, z has been
assumed. The co-ordinate z is perpendicular to the surface. The flow of the liquid
and gas jet flowing out of a nozzle with the rate ) is considered two dimensional,
axisymetrical.

It has been assumed that:

1. The motion of the liquid film is laminar, fully developed and induced by
the motion of the gaseous phase.

2. The gaseous phase flowing out axisymmetrically from the nozzle induces
the shear stress on the liquid film surface and feeds the film with the liquid
at the rate ¢.

L

. Liquid-wall and liquid-gas separation surfaces are smooth.
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Fig. 1. Impingement of two-phase gas-liquid jet.

4. Physical properties of the liquid are constant.

5. Theliquid film thickness is small, which allows us to assume a linear velocity
profile in z direction and simplify the equation of motion as in the case of
the boundary layer.

6. Gravity effects are neglected.

7. The circumferential velocity component is zero as a result of symmetry
(u = 0). It means that the radial component and film thickness are functions
of the radius r.

A full set of conservation equations of mass and momentum in cylindrical
co-ordinates is given in the following way [5]:
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According to the above assumptions, the governing equations can be simplified
as below

1 0(rv) : d(w)

1_‘307" : 0z :13’ o
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The following boundary conditions for the problem can be assumed

W T (2:3)
R At

des v

It comes from Eq. (2.2) that the pressure across the liquid film is constant as
in the boundary layer and depends only on the radial co-ordinate. The pressure
gradient and shear stress on the phase separation surface can be determined for
the film from a free gas jet flow assuming that the film is thin and its thickness
can be neglected in the gas flow. An analytical solution for the axisymmetrical gas
flow impinging on a surface was given by White (1974) and Schlichting (1980) [1].
It was developed as the solution of a boundary layer flow with a pressure gradient.
The pressure distribution along the wall can be written after Schlichting as

% 8 UL ,
Po 0.5 §Pg“2(7‘2 + f(2)). (2.4)

The velocity components for the gas flow are given by the relations, see Martin
(1977), [1]:

v, = arF'(n), w, = —2az,

J q (2.5)
az(DD> (104 00347> n=z %

Martin suggested that for an axisymmetrical nozzle the value of the coefficient
can be expressed as a function of geometrical parameters as in Fig. 1.
The shear stress on the gas-liquid phase separation surface can be calculated
based on the gas flow and is equal to

d ,
=i OVg =1 8120 [aPpyptgr (2.6)

because F"'(0) = 1.312.
In order to find an approximate solution of the problem, integral forms of
conservation equations have been developed [3].
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The mass balance within the liquid film can be obtained by integrating the first

equation (2.2):
) )
v d(rw
/ (()17 ) / ((,)N )(lz =1 (2.9
0 0 v

Integrating the first integral according to the integration rules for a parametric
integral and utilizing the boundary conditions for the second integral in Eq. (2.7)
we can obtain:

% /(;7‘1/)clz = %7'1@ + rw; = 0. (2.8)
0
Making use of the relationship
a6 a6 v
el o ¢ =«
wi = 5 T Yo, (2.9)

being in force at the liquid-gas phase separation surface, Eq. (2.8) can be brought
to the form

—/(71/ dz —|— ~1 =\ (2.10)

Assuming that
i | 4,
e i const. (2.11]

and placing Eq. (2.11) into (2.10), we can obtain the following mass conservation

equation
§
0 / d ool (2.12)
— |r [ vdz| —qr = 0. :
or .
0

Integrating Eq. (2.12) from 0 to » and multiplying by 27 we can get the mass
equation as given in [1]

[¢)
2777*/1/5[2’ = 1r?qg. (2.13)
0

The integral momentum equation can be obtained by integrating the components
of the second equation (2.2) within the film thickness limits.
Integrating and rearranging the first component gives

o e g 95
10 9 9 o
/,__ Z = — = Gl e 2.14
/ - 2 ()1 {()7 /V ¢ (7'1'1/1] ( )
4
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Integrating by parts the second component and considering the differential mass
balance equation, we can obtain

: ) 0 . :
/ul—(l~ = w; uL—l—/ /—~ + s = W + ) /l/zclz - Q—éz/? +—1-/1/2(lz.
ar ar r )

0
(2.19
The third and fourth components after the integration assume the following forms

é :

g 92y K dv | 2 T e
——dz = 2.16
/ p 0z® pd/, 0% ;- ( )

r10 10
Jp dp =
——dz = ——4. 2.1
/p@?‘( pOr (2.1

Summing all transformed components of the equation of motion we can obtain

()87 / “do—u g— + wi; + — / Ve 5 = %%5 (2.18)
0
Introducing the expressions (2.9) and (2.11) into (2.18) gives
o 7 I G i e
o /I/ dz — viq+ = 7 /1/“([2 = ke e - —é. (2.19)
0 0

In order to solve the problem let us assume a simplest, linear velocity profile in
the form:

u=C(¢]. (2.20)

The coefficient C'(r) and the film thickness are determined from the integral
balance equations (2.13) and (2.19). Placing Eq. (2.20) into (2.13), we can obtain

qr i
AR 2.1
C(r) S (2.21)
and also 5
Jdv L qrp e
Ty = /15: = C(%)u é(l')z (2.22)

Let us assume that the inertia forces are small and can be neglected (left-hand
side of Eq. (2.19)). Then combining Eqs.(2.6) and (2.20) with Eqgs.(2.21) and
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(2.22) and the formulaa for pressure gradient (2.4), we can finally arrive at an

expression
3 2
g ety L g P g3 (2.23)
1t 1t ;

analogical to the one obtained in [1] with the only difference that Eq. (2.23) does
not exhibit a coeflicient 2/3 in the second component on the right-hand side which
appears in [1]. Substituting the expressions (2.6), (2.20) into the full equation of
motion (2.19), we can obtain

dé 3 [ 1.3124/a®p 1,062 2
= ( e (2.24)

R p p p

Introducing non-dimensional variables

rt=logt= 2 (2.25)

where: 7o is the characteristic radius, the expressions (2.23) and (2.24) can be
transformed as follows

3 2
g= 130l =t e pity BTG S (2.26)
p? p

s+ 3 (1-312\/a3pgﬂg7‘052 4 Pg@rg8t? qu) (2.97)

drt T @t P p p

The film thickness after its stabilisation is determined by the relation (2.26). In
order to solve Eq. (2.27), it is necessary to know the film thickness for a zero
radius or the film thickness along the development length, when the inertia forces
can be neglected. As the experiments show, the film thickness in the jet centre is
not zero.

The wall shear stress can be expressed in general as:

v

. (298]

T C'f/)
Then, if the friction coeflicient is known, we can use Eq. (2.19) in the laminar
and turbulent flow.
The expression (2.19) together with the mass balance equation (2.13) form a
closed set of equations which enables the determination of the local film thickness.
Integrating Eq. (2.27), we can obtain the dependence between the liquid layer
thickness and radius. The direction of the integral curve is determined by the
derivative of the liquid film thickness with respect to the radius. This derivative
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tends to infinity when the denominator in Eq. (2.27) reaches zero.

When the nominator and denominator in the expression (2.27) simultaneously
go to zero, the derivative which determines the local direction is undefined and
a singular point appears. In this case, the behaviour of integral curves in the
vicinity of a singular point can be investigated by linearisation of the right-hand
side of Eq. (2.27) [4].

3. Numerical calculations

The numerical calculations have been performed for the parameters corre-
sponding to the available experimental data [1], i.e. for the jet of water droplets
atomized in the flow of air through a nozzle. The value of the parameter « in
Eq. (2.5) has been estimated at « = 1500s~!. It has been assumed that the
atmospheric pressure is equal to p, = 240 kPa and the characteristic radius is
Fg—2.10 *m.

0.3 2 T T T T

air - water

p, = 240 kPa

a = 1500 s
0.2 - .
q

[m/s]
0.1 -
0 1
0 10 12

Fig. 2. Unit wetting volume ¢ vs. non-dimensional thickness yT of the stabilised liquid film.

For the above data, the thickness of a fully developed liquid film as a function
of wetting rate ¢ has been determined with the help of Eq. (2.26). The results are
given in Table 1 and Fig. 2. From there, knowing the wetting rate, we can deter-
mine the thickness of the fully developed liquid film. If, for example, we assume
that the unit volumetric flow rate of water droplets is ¢ = 1 litre/h/cm?*=1/360
m/s, we obtain that the film thickness is 6, = 200 - 1075 m. The thickness of the
liquid film before stabilisation for this unit volumetric flow rate has been evalu-
ated from Eq. (2.27). The calculations have been performed using a Runge-Kutta
fourth-order method under Mathcad 5+ on PC. The results of calculations are
presented in Fig. 3.
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Fig. 3. Non-dimensional film thickness §T vs. non-dimensional co-ordinate r¥.

Table 1. The unit wetting volume ¢ as a function of non-dimensional thickness of
the stabilised liquid film for p = 240 kPa, a = 1500 s™1.

[m/s] &h
0 0
0L 117576 210
0.2 T o18 o=
0.5 |3.11221-10*

1.0 |0.00133
2.0 10.00602
3.0 10.01509

4.0 10.02959
5.0 [0.04815

4. Conclusions

A simple model of two-phase liquid-gas jet impinging on a flat surface and
forming a thin liquid has been formulated. The model draws on the conservation
equations of mass and momentum and closure equations. The model can be fur-
ther developed to investigate the heat transfer at the heated surface impinged by
the jet and to calculate the heat transfer coeflicient to this surface. As mentioned
in the introduction, this case has several practical applications, for example in
heat exchangers.

The obtained equation (2.27) for the film thickness is strongly nonlinear and
in some particular cases can possess singular points. In other cases the right-hand
side of Eq. (2.27) contains zeros and the solution has non-monotonic regions.
Therefore, before starting the numerical calculations it is required to conduct a
qualitative analysis of solution in order to find the adequate method of solving
the problem.

Manuscript received in August 1996
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Struga dwufazowa gazu i cieczy uderzajacej o powierzchni¢ plaska

Streszczenie

Przeprowadzono analize teoretyczna laminarnego ruchu filmu cieczowego powstalego wskutek uderze-
nia strugi gazu zawierajacej kropelki cieczy o powierzchnie plaska. Rozplyw filmu cieczy newtonowskiej
na powierzchni powodowany jest ruchem gazu przeplywajacego z gradientem cignienia nad filmem cie-
czowym. Sformulowano model teoretyczny zjawiska, wyprowadzono calkowe réwnania zachowania dla
tego przypadku oraz zaproponowano metode rozwiazania zagadnienia. Wskazano na istnienie w rozwia-
zaniu niemonotonicznogci filmu w poblizu punktu spietrzenia gazu. Wykonano obliczenia numeryczne
ilustrujace teorie. Uzyskany rezultat dla grubosci filmu ustabilizowanego poréwnano z istniejaca teoria
zagadnienia [1] uzyskujac dobra zgodnosé wynikdw.



