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ANDRZEJ KORCZAK*

The laminar flow of liquids in a flat-wall face clearance
with a variable width between stationary
and rotating rings

Institute of Power Machinery, Silesian University of Technology, 44-101 Gli-
wice, Konarskiego 18, Poland

Abstract

The paper deals with the laminar flow through a flat-wall face clearance with a variable
width between the stationary and rotating rings. The flow through such an clearance with
immobile walls is described, too. Besides the longitudinal clearance, the face clearance is an
essential structural element of hydraulic machines. A characteristic example is the face clereance
between the slip and stopper ring the balance disk in a multistage centrifugal pump. In the case
of conventional solutions of the balance disc the structionally required width of the clearance
leads to a turbulent flow of the liquid through the clearance [2]. If the outer diameter of the
balance disc is reduced, the pressure under the disc increases, the width of the face clearance gets
smaller and the flow rate through this clearance become less intensive. In result, the turbulence
of the flow drops and it becomes possible to enter the zone of transient and laminar flows [7].
The reduction of the diameter of the balance disc is connected with a reduction of leakage losses
and friction resistance, and thus the pump becomes more efficient. In the case of applying a
self-aligning disc, the momentum of the pressure forces may deviate it, preventing a dry friction
of the slip-ring against the stopper ring. Such a disc can operate with a considerably narrower
clearance than that required by stiff discs. Laboratory-scale investigations carried out on a
model of a balance disc with a self-aligning support of the rotating ring have confirmed that
in the case of a centrifugal flow the distribution of pressure in the face clearance prevents the
occurrance of dry [riction, i.e. a contact of both rings [7, 8]. In convectional structures of balance
discs this effect is neutralized by their stiffness, so that the possibility of dry friction cannot be
prevented.

Keywords: Laminar flow; Face clearance
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Figure 1. Diagram of a flat-walled face clearance with varying widths.

The flow has been assumed to be stationary, and so the influence of the body
forces could be neglected. Moreover it has been assumed that along the width of
the clearance the pressure is constant, as a laminar flow in a narrow clearance is
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fully developed as two combined boundary layers, in which the pressure gradient
transverse to the flow is one order of magnitude smaller than the gradient in the
direction of the flow [6, 15]. Basing on such assumptions the motion of liquid
in the clearance is described by the N — S equations, which in the cylindrical
coordinate system yield

2
v, Uy Ov, vy,

Uy

o r op 1
10p ( Py 120 Pu 16u. 2 v, U,,> W

o - == -
ar2 .~ r2 §yp? gz2 “rdr  rtdg vl

1 dp 521)(,, 1 02% 32% 1ov, 20y, wu,
ot =1, (2
T ( ar2 12 9p? 4 072 g rdeis _r* 0@gae v (2

9p
0= P (3)
In the case of these assummptions the equation of continuity takes the fol-
lowing form 4 >
By Op Vo
N Al ot @ = 0. (4)
The face clearance between the slip and the stoping rings of the balance disc
is characterized by the ratios of its functional dimensions and the width; in the
case of a self-aligning disc these may assume the following values: a = 0.12 to
0.04 mm, r = 50 to 100 mm, € = ry — rifr = 0.14 40 0.36.
From these dimensions the following proportions may be derived: aliy =
0.0004 ti 0.0016 oraz e* = 0.000386 to 0.00168.
In other words, assessing the order of values of the respective terms of the
Egs. (1) and (2), the ratio a/r; may be replaced by e?.
Subsequently we convert Egs. (1) and (2) into dimensionless quantities, in-
troducing the following substitutes [10]

Up = Wr10y,

Vyp = W1V,
r=r7=r(l+e),
TP = 71T,

Z=aZ=€TrZ.
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The pressure p is expressed by a dimensionless quantity basing on the relation

@ i 0%,
Or= bl

Substituting dimensionless quantities we get

dp piwry 6%,
erde.  EPri 800

and hence: p = &/p.
We also introduce the Reynolds number

4

Re = wria/v = e*wri/v.

Having substituted the dimensionless quantities in the Egs. (1), and (2) we have

g e Ol 100 5200, 40
0z? 72002 0087 F oz @2 Oy P2l

0 Uy, 0D, Up
Ree® ( e o e
7 IE '

0 r Op 7
E D 9%, g1 (:72% &, 7100, 2 00, 50
1+27 dp (g 02 T FPap om Cror Crop (7))

2 Calculation of pressure distribution in the clearance
by applying equations of motion, simplified to ex-
pressions of the order > ¢ / (1 + X ¢€)

If in the Egs. (1) and (2) the expressions of the order £/(1 + Z¢) and less are

omitted, it will result from the derived dimensionless equations that they have
been reduced to:

dp %v,

or ,u T 2 (1a)
821)
87 — () (2a)

Moreover, the folloving boundary conditions have been assumed

for z = 0, we get: v, =0 and v, = 0,
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for z = a, we get: v, =0 and v, = wr,

for r = 1y, we get: p = pq,

for r = 19, we get: p = ps.

From such a geometry of the clereance results the possibility to determine its
width by means of the following formula:

a = Gm + Qrcos ¢ (5)

in which:
Gin + Gmaa

A = —-2—_ (6)

Integrating the Egs. (1) and (2) versus the variable z and taking into account
che relation (3) as well as the assumed boundary conditions, we get

1 dp ,
=——(2"—a 7
UT‘ 2‘[1, ar (Z CIZ), ( )
i = ng. (8)

Substituting the velocity components expressed by the formulae (7) and (8)
wd their derivations into Eq. (4) and applying the parametric equations:

b= acosp, (9)

¢ = buwasinp (10)

md substituting also the relation (5), we get a heterogeneous differential equation
of the second order with variable coefficients

: 82]9 o : ; 0p
rmm+mﬁgﬁ+w%%?+%mwﬂ+6ﬁpw+@gm
After such simplifications the integration of Eq. (11) permits to calculate the
oressure in any arbitrary point of the face clearance. Eq. (11) can be solved both

malytically and numerically after it has been reduced to a differentiating form.

+er? =0. (11)

2.1 Analytical solution

Applying the substitution method we get a differential equation of the first
rder. It can be solved by finding first the general integral of the corresponding
1omogenous equation and then applying the method of the variations of con-
tants. As a result of integration the course of pressure in the clearance along
he radius r was determined for the assumed angle ¢

M —ZG?HC + 3()301 +
"~ 3a2,b3(an, + br)
3 3 3 ap3
g o alo a0,
: Cy+ —1 e
6amb?(ay, + br)? b i G 3a3, b3

p(r, p)

In(am + br). (12)
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After the substitution of the relations (9) and (10), Eq. (12) contains discon-
tinuities in the case of ¢ = £7/2. Therefore, it must be solved by substituting
the angle ¢ in the intervals: —7/2 < ¢ < 7/2 and 7/2 < ¢ < 3n/2. The fina
result is obtained by joining the solutions concerning both these intervals.

The integration constants C; and C5 can be determined basing on the bound
ary conditions, which again are determined by the values of the pressure on botl
sides of the clearance: for a centrifugal flow p; > po, and for a centripetal flow
p1 < pa.

2.2 Numerical solution

The numerical solution of Eq. (11) simplifies somewhat further calculation:
of the forces and moments, which in the case of applying the analitical solution o
this equation also require discretisation. For a given angle ¢; the radius betweer
the inlet and the outlet of the clearance ought to be divided into N sections wit!
the length Ar. Then the pressure at the point determined by the angle ¢; anc
the radius r;, can be calculated by means of Eq. (11) in the differentiating forn

- Pj+1+Dj-1 3 46313 + 9a,,b%r2 + Ga?nbr - afn {};’:pj.*_l e cr Ar?
¥ 2 (am + 0r)3 T 4 2(am + br):
(11a

in which the pressure on the radius r; amounts to p;j=1, the pressure on the radiu
ro amounts to pj=x 41, and the Eqgs. (9) and (10) determine the parameters b anc
c for the angle ;.

3 Calculation of the pressure in the face clearance by
means of equations of motion simplified to expres
sions of the order > ¢3 (taking into account circum
ferential stresses)

The flow dealt with in this paper may be described in more detail leavin
out the expressions of the order €* or smaller in the equations (1) and (2). Then
besides the Egs. (1a), (3) and (4) we get Eq. (2) in the following form

=0. (2b

Moreover, similarly as before, the boundary conditions and geometry of th:
clereance were assumed.
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Integrating Eq. (2b) versus the variable z and taking into account the relation

3) as well as the boundary conditions, we get
U= i@(% —az) + rwZ. (8a)
2urdyp a

Substituting the components of velocity expressed by the formulae (7) and
8a) and their derivatives into Eq. (4) and assuming the following coefficients:

A=apja,

B = 6uw/a?,
o be constant, we get a heterogeneous differential equation of the second order
vith partial derivatives and variable coefficients

oy 1 )
(A+ 7 cos @)38—5 + [(A + rcos 4,0)3— + 3(A + rcos ¢)? cos @]a—‘:-!-
2 :
(A + rcos )’ i —(A + 7 cos p)? smcpijp =013
7 0p? Jdp

This equation can be solved approximately: analytically by means of serial
xpansion or numerically.

As the Eq. (12) is discontinuos and an integral of Eq. (11), there may also
ccur difficulties due to the lack of proofs of convergences in the serial expansion
f Eq. (13). For this reason we solve the problem numerically.

This was done by applying a grid of points, dividing the circumference into
( segments and the radius into N sections. In the case of points which are not
ituated on the boundary of the region (interior points) differentiating equations
rere set up, replacing the derivatives in Eq. (11a) by differentiating quotients.
or the angle and the radius central differences of pressures were assumed. The
esults were equations for 1 <i< K and2<j < N -1

aDiid s — 205 D
(A + 7 cos SD’L')(S[J*.LI/ Pji T Pj—1,

+

Ar?
1 Bt e b
[(A + 1 cos ;)3 = + 3(A + 1 cos ;)2 cos ;] 2L Pi=1i .p_, L
T QAT]'
1 Pjit+1 — 2pji + Pji-1
— (A + r; cos ;)3 =L LA
sz( ' COS ;) Ay
3 i
;—(A + 7; cos ;) blncpi% +.Dr s =1 (13a)
J 1

here KAw, = 2.
Thus we get K(N — 2) equations, the number of which is equal to the pro-
uct of KN unknown values. However, 2K lacking roots are determined by the
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boundary conditions at the inner and outer boundaries of the clearance:
Di—li= Pl;
Pj=N,i = D2
Applying Eq. (13a) we can calculate subsequently the pressure in the respective
points of the grid, expressed by the transformed formula

1 AririAg? [Pj+1,i+p.7'*1’i+

p -“‘ ——— =
e 'r?A(p;) + A'rjz A'r]z

i iyt Bl (1 il 3 oS @ )pj+1,i—pj~1,i_

'r?Acpf ;; A aicons 24805
3sing;  pjir1 — Pji-1 Br; sin ; ‘
= = (13b)
Arscosy, © 2rylg (A +rjcosy;)?

4 Velocity of liquid flow in the clearance

The radial velocity v, and circumferential velocity v, taken into account in
our analysis of the flow rate of a liquid in the clearance can be calculated leaving
in the Egs. (1-4) those expressions which are larger than ¢/(1 + Ze) or more

precisely leaving those expressions that are larger than e3.

The radial velocity in the clearance can be calculated by means of Eq. (7).
Having calculated the derivative of pressure making use of Eq. (12) and substi-
tuting it in Eq. (7), we obtain

g 1 Ci (L,.fn‘C A 3[‘)301
2 a3 3a,b(ay, + br)3

m

—2a2,¢+ 3b3Cy —a3 ¢~ 3b°C)

i

302,02 (am + 0r)2 ' 3a3 b2 (an, + br)

U

[22 = (am + br)z]. (14)

Next, taking into account the parametric Egs. (9) and (10) we get the velocity
vy at any arbitrary point of the clearance.

Velocity of flow of liquid in the clearance can also be calculated introducing
into Eq. (7) the pressure gradient calculated iteratively by means of Eq. (11a).

In the case of more accurate calculations, the pressure gradient calculated
iteratively by means of Eq. (13b) must be introduced into Eq. (7).
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5 Rate of flow through the clearance

The flow rate @ through the clearance can be calculated, for instance, for the
radius 7y, from the formula

a 2w o
i i 5
b //U’"Tld'Zd‘P = - /(am + ar; cos W)BM"@ (15)
00 12p dr
0
where the derivative 2L%)

a—— 1s substituted similarly as in Eq. (14). Due to the
necessity of neglecting the points of discontinuity, determined by ¢ = £7/2, we
must divide the integrations in two ranges. Due to difficulties connected with the
analytical solution of Eq. (14), also the solution of the approximated Eq. (15)
seems to be justified. The velocity at the subsequent points of the clearance can
be calculated by means of formula (14) or by means of iteration.

We may assume with a fairly good accuracy that the flow through the clear-
ance shown in Fig. 1 equals to the flow through a clearance with a constant
am, the remaining dimensions and the difference of pressure p1 — p2 being the
same, as has been proved by the analysis presented in [10] and by experimental
investigations dealt with in [4].

In the case of such an assumption the volumetric flow rate can be calculated
by means of the transformed formula put forward by Huhn [14]

Spe o F ral
= [p1 — Pl P e s 16

6 Axial force and the momentum caused by pressure
in the clearance

The whole axial force exerted on the stopper ring or slip-rings is the result of
the pressure inside the clearance. The force of this pressure amounts to

2 99<7‘T/2 r2 Lp<3'7r/2
Fo =l Fyp= / / p(r, p)rdrde +/ / p(r, )rdrde. (17)
"L p>—m/2 71 Lp>'7r/2

The asymetric distribution of pressure in the clearance leads to the occurence
of momentum, whose projections on the axes z and y in the coordinate system of
the assumed arrangement can be calculated making use of the following formulae

ry O<m/2 ry P<3m/2

M, :/ / p(r, p)r? singodrdgo—i—/ / p(r, ©)r? sin drdyp, (18)
TL p>—m/2 1 p>m/2
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) §0<7.T/2 77 <p<3.7r/2
N — / / p(r, ©)r? cos pdrdyp — / / p(r, p)r? cos pdrdep. (19)
L o>—1/2 r1 (,9>.7T/2

The momentum M acting on the slip ring amounts to

M=y Mz +M2. (20)

The angle between the direction of action of the vector of the momentum M
and the axis z is calculated by means of the formula

on = arc tg(My/My). (21)

If 0 < oy < 7, the momentum M counteracts the contact of the slip-ring
with the stopper ring, and if 7 < s < 2, it will tend to a contact of both these
rings within the frame of the elasticity of the structure.

In spite of the division into regions, in which the points of discontinuity (¢ =
+m/2) have been neglected, the formulae (17-19) gives rise to complications.
similarly to formulae (15), which necessitates as iterative integration. This can
be done for concrete data.

The surface of the rings was divided into K segments corresponding to the
angle Ay, which in our calculations was assumed to be Ap=1°. Each segment
was divided into N elementary fields, all of them having the same width Ar. I
the quoted example it has been assumed that N = 100. In order to assess the
assumed angle and radius, the calculations were repeated with the purpose of
multiple division. The results of these calculations differed in the case of furthe:
places.

The sums of the products expressing the pressure forces exerted on the ele-
mentary fields were calculated by means of the equation

N
Fy=">"plry,@;)ri; Aplr
i=1
where @; = jAp 4+ Ap/2,
r; =11 +1Ar,
NAr =11 —19
which were then summed up for the entire surface of the ring. Thus, the entir
axial force acting on the ring amounted to

1<
Fil=D o, (17
Jj=0
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where KAp = 360° = 2.
The coefficient of the axial force resulting from the excess pressure inside the
clearance compared to the pressure py, can be calculated applying the formula

§ = [Fy — pam(rs — r])]/(p1 — p2)m(r5 — r). (22)

In order to calculate the momentum acting on the ring, the subsequent sums
of products had to be calculated

N
Mj — Zp(’/‘i, (pj)TiQATAQO.

1=

The projections of the vector of the momentum on the coordinates were calculated
as follows

K

M, = M;sin(yp;), (18a)
d=1
K

M, = Z M cos(p;). (19a)
j=1

The momentum M was calculated using formula (20). The angle ¢, between
the axis z and the vector of the momentum was calculated by means of Eq. (21).
For the purpose of calculating both the axial force and the momentum the values
of pressures calculated by means of Eq. (12) or iteratively applying the formula
taken from Eq. (12a) as well as (13b).

7 Character of the flow through the clearance

Eq. (1a) describes Poiseuille flow through a clearance, whereas the Egs. (2a)
and (2b) describe the Couette flow, both neglecting and taking into account the
pressure gradient. Due to changes in the width of a clearance with flat walls in
the aforesaid phenomenon we can detect elements of the Jeffery-Hamel flow [1].

The character of the flow can be determined basing on Reynolds number,
which is in the case of the Poiseuille flow through the clearence expressed by the
following formula [1]

Rep = —— (23)

Behoi s (24)
v



100 A. Korczak

v..n — is the mean radial velocity,
— the mean velocity in Couette’s flow (without the pressure
gradient it equals half the peripheral speed u of the wall).

Laminar flows in a clearance are limited by critical Re numbers. In the case of
Poiseuille’s flow Repr = 3000, and for Couette’s flow Rec,er = 1300 [1].

The described phenomenon of flows is a superposition of both these flows,
the boundary conditions being described by two Reynolds numbers. Due to
turbulization of the Couette’s flow the coefficient of resistance of the flow through
the clearance grows, whereas an increase of the Reynolds number in Poiseuille’s
flow is connected with a reduction of the coefficient of resistance [5, 6].

The flow in a face clearance can also be defined as an intermediate phe-
nomenon between the flow in a longitudinal clearance with a rotating inner wall
and the flow through such a clearance with a rotating external wall. In the first
case the critical Reynolds number Rec reaches a value of 1900, and in the latter
case the flow becomes unstable already at the stage of laminar motion. This
may be due to the effect of centrifugal forces during the curvilinear motion of the
liquid, when the velocity from the center of the curve towards the external side
of the flux in the former case grows and in the latter one decreases [15].

In the region of the inlet to the clearance its character is determined by
Reynolds number, similarly as in the case of the flow around the rotating disc,
and is defined by the formula [1]

(&)

Ragiaity (25)
v

Investigations quoted by Schlichting [1] indicate that if there is no forced flow,
the flow around the rotating disc passes over from a laminar flow to a turbulent
one when Re = 3-10°. From Wagner’s investigations [5] it results that in spite of
a turbulent flow in front of the clearance, inside the clearance the flow becomes
laminar. Thus, for instance, in front of the clearance Rey; = 4.47 - 10° but inside
it we have a laminar flow: Rep = 2300, Rec = 1300. From the region outside
the clearance the liquid flows between the disc and the casing with a considerable
width into a very narrow clearance between the slip and the stopper rings. Such
a change of the conditions of flow is connected with the qualitative increase of
the force of internal friction versus the forces of inertia and laminarization. Only
if Rec = 1500, the flow through the clearance changes its character more visibly.
In order to calculate the value of Rep, the radial velocity in the clearance
1 be found using, for instance, the formula (13). Substituting z = a/2 we can
culate the maximum radial velocity, and the average velocity of the laminar
- can be defined as 2/3 of the maximum velocity. In the case of the discussed
he average velocity in the clearance changes both along the radius and along

ircumference.
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If the width of the clearance varies, also the Reynolds number will change
along the clearance as well as inside the clearance. In the zone of a narrower
clearance there may occur a laminar flow, and in the zone with a greater width
the flow can be turbulent.

8  Numerical example

The numerical values have been chosen in such a way that the flow would be
laminar in the whole clearance, i.e. Rep < Repi, and Rec < Recy,. For the
sake of a better understanding of this description the following numerical values
have been assumed: p = 1000 kg/m?, u = 0.0011404 kg/ms (as for water at a
temperature 15°C), w = 150 s~!, r; = 0.075 my T 00l movas = 90100005 m:
Fundamental calculations were carried out for the angle of convergence of this
clearance o = 0.00046. The most possible convergence of the clearance will occur
when ¢ = 7 will be a = a,p;,, = 0 amounting to o = 0.0005 rad.

8.1 Centrifugal flow

At the inlet to the clearance the pressure on the radius r1 amounts to p; =
1200000 N/m?, whereas the pressure at the outlet cross-section of the clearance
it amounts on the radius ry to py = 600000 N/m?. Assuming these values,
the pressure p along the circumference of the clearance and in expansion was
presented on diagrams for the subsequent radii. F igure 2 shows the pressures
calculated by means of Eq. (12), and Fig. 3 these same pressures calculated by
means of equation (13b).

Comparing Fig. 2 and Fig. 3 we find that the solutions are quite similar and
differ only numerically. In order to assess the differences in both cases the force
F,, the moments M,, My, M, as well as the angles gy were calculated:

Calculations: applying equation (12): applying equation (13a):

F,=12394. 4N = 12077 N

1 = 0.5029 =464

M, = 57.185 Nm = 48.504 Nm
M, = 46.1 Nm = 37.07 Nm

M= 73.455 Nm = 61.05 Nm

wn = 0.6785 rad = 38.9° = 0.6526 rad = 37.4°
Disregarding motions of the order < e/(1+¢) = 0.333 to 0.25 the differences
between the calculated components M, My of the momentum M are of this
order. Discrepancies between the values of the calculated forces F, and angles
@K, however, are much smaller. If the value of the angle @ is negative, the
momentum acting on the slip-ring counteracts its contacting the stopper ring.
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Figure 2. Centrifugal flow. Pressures field in the face clearance with a rotating slip-ring. Cal
culated by means of Eq. (12).
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Figure 3. Centrifugal flow. Pressures field in the face clearance with a rotating slip-ring. Cal
culated by means of Eq. (13a).
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Further results have been quoted for solutions obtained by applying Eq. (13a).
Fig. 4 illustrates the influence of the convergence of the walls of the clearance on
the maximum pressures along the radius, and Fig. 5 on the minimum pressures.
From the diagrams presented in Figs. 4 and 5 it results, that with the growing
convergence the pressure increases progressively in the clearance just before its
narrowest part and drops immediately beyond it. Actually maximum pressures
may be reduced due to the decrease of viscosity of the liquid, resulting from the
rise of temperature brought about by friction. Also minimum pressures will be
restricted to the boiling pressure of the liquid flowing through the clearance.

Fig. 6 presents the dependence of constituent and complete moments on the
convergence of the clearance. The intensity of the centrifugal flow, calculated
by means of Eq. (16), amounts to @ = 0.1226 1/s. In the whole clearance the
Reynolds numbers Rep and Rec are smaller than the critical ones. In the case of
such an angle ;s the moment M counteracts the convergence of the clearance.

8.2 Centripetal flow

Outside the clearance the pressure has been assumed to be py = 1200000 N /m?

and inside p; = 600000 N/m?. Similarly as in the case of the centrifugal flow,
the pressures were calculated along the circumference, as shown in Fig. 7. Then,
analogically as in the case of the centrifugal flow, the force and the momen-
tum were calculated, acting on the slip ring and the stopper ring at a cen-
tripetal flow. As a result of calculations the following values could be deter-
mined: F, = 11727 N, 9 = 0.42203, M, = 48.504 Nm, M, = —37.103 Nm,
M = 61.07 Nm, ¢ = 0.653 rad = —37.410, @ = 0.1167 1/s. In the case of
such an angle ¢j); the momentum M leads to an increase of convergence of the
clearance (within the frame of the elasticity of the construction), i.e. the effect is
opposite to that of the centripetal flow.

8.3 Flow in the case of immobile walls of the clearance

If the walls of the clearance are immobile, this phenomenon can be reduced
to Poiseuille’s flow through a flat-walled face clearance with a variable width.
Then, in the case of a centrifugal flow the pressure is distributed in the clearance
as shown in Fig. 8, whereas in the case of a centripetal flow the pressure is
distributed as shown in Fig. 9. In the case of the centrifugal flow the calculated
values were: F, = 12074 N, 1 = 0.4641, M, = 0 Nm, M, = M = 37.09 Nm,
wn = (m/2)rad = 90°. In the case the centripetal flow, on the other hand, these
values amounted tor B = 107265 N )" ="0:42203, M, — 0 "Nm, M, =M =
—37.09 Nm, ¢y = —(m/2)rad = —90°. The diagram showing the distribution of
pressures and the calculated values indicates that in the case of a centrifugal flow
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Figure 5. Centrifugal flow. Minimum pressures along the radius, at various convergences a of
the wall of the clearance. a: 1)0.0001; 2) 0.0002; 3) 0.0003; 4) 0.0004; 5) 0.00044; ¢
0.00046; 7) 0.00047; 8) 0.00048; 9) 0.000485; 10) 0.00049.
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Figure 6. Dependence of constituent and full moments on the convergence « of the clearance
and the angle pa between the vector of the momemntum M and the axis x.

p [Pa]
2000000

1800000
1600000
1400000 \
1200000 r2=0,1
1000000 - e
800000 —TN
600000 r1=0,075
400000
200000

! 1V

-200000
0

r [m]

180 o[deg] 360

Figure 7. Centripetal flow. Pressure field in the face clearance with a rotating slip ring.
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Figure 8. Centrifugal flow. Pressure field in the face clearance with immobile walls.
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Figure 9. Centripetal flow. Pressure field in the face clearance with immobile walls.
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the momentum counteracts the contacting of the walls of the clearance and that
in the case of a centripetal flow just the opposite is the case.

9 Conclusions

The analysis dealt with in this paper shows that the description of the flow
through the face clearance by means of equations of motion, simplified to expres-
sions of the order > ¢/(1 + Ze) provides an image similar to the description by
means of equations simplified to expressions of the order 3 (taking into account
the circumferential stresses). The differences between the calculated values are of
the order € and are the smaller the smaller their value [10]. In a shorter clearance
satistactory results can be obtained applying a more simplified description. The
term ‘short clearance’ means that the ratio e is of the order 0.1 or less. Such a
geometry of the clearance is to be found in slip-seals when the pressure of the
rings is not symmetrical and the boundary flow passes over into a laminar one
[10]. In the case of a longer clearance this phenomenon is qualitatively of a sim-
ilar character, although values calculated by means of equation (12) may differ
substantially from those calculated more precisely.

The presented analysis of a laminar flow through a face clearance indicates
that the distribution of pressure inside the clearance depends to a large extent on
its convergence. In the case of a centrifugal flow the momentum caused by the
force of pressure in a face clearance with a convergence « can prevent dry friction
if the support of the ring is elastic. This effect was confirmed by investigations
described in [7] and [8]. Making use of this effect, a new design of a balance disc
was developed, described in the patent [9]. If we have to do with a centripetal
flow, the sense of the vector of momentum is just the opposite. A depression of
pressure behind the contraction of the clearance may lead to a cavitation and
give therefore, rise to erosion. The constituent of the momentum M calculated
at a rotational speed equal to zero is identical to the rotational speed of, the slip
ring assumed in the numerical example. Hence the conclusion may be drawn that
for the assumed geometry of the clearance and pressure drop the constituent of
the momentum M is constant over the whole range of rotational speeds. Neither
does the value of the axial force F, i.e. the bearing capacity of the slip ring of
the balance disc, depend on its rotational speed.

The calculations presented in this paper may find application both in the
suggested range of parameters of the operation of the balance disc in a multi-

stage centrifugal pump and for axial slide bearings fed with oil under adequate
pressure.
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