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Simulation of incompressible flow past a bluff cylinder
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Abstract

A two-dimensional viscous, incompressible, unsteady flow past a bluff cylinder with sharp
=iges is simulated using a purely deterministic Lagrangian model incorporating viscous effects
“ifusion and no-slip boundary condition). The method applied is based on a combination of
“he discrete vortex and the panel method. The viscous diffusion effect is simulated by means
¢ the diffusion velocity method. The evolution of vortical flow past a square cylinder after its
ulsive start and motion with constant velocity in resting liquid is simulated for moderate
“=ynolds numbers and several different angles of incidence.

¥eywords: Unsteady viscous flow; Numerical simulation; Discrete vortex method

Nomenclature

—  half length of the cylinder side
— shape function
—  time
- distance along a boundary
— tangential velocity
unit vectors
velocity vector
— position vector
— fluid flow region
— smoothing function
— number of discrete vortices
— number of control points
z — Reynolds number
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R — two-dimensional Euclidean space
At —  time step

As  — length of a segment

fe% — angle of incidence

0D - Dboundary of flow region

€ — distance from the wall

vy — strength of vortex sheet

A — strength of a vortex, circulation
v —  kinematic viscosity

o — smoothing parameter

w — vorticity

12! — strength of a vortex, circulation
v — gradient operator

1 Introduction

A bluff body is featured by a non-streamlined geometry, responsible for flow
unsteadiness involving massive boundary layer separations and a wake of sub-
stantial cross-section. This paper presents a numerical model based on a discrete
vortex approach which has been used to simulate a two-dimensional, viscous.
incompressible time-dependent flow past a bluff, sharp edged body, such as a
rectangular cylinder. Despite simple geometrical conditions, determination of
the flow past such a body is a complex task, dealt with in numerous experi-
mental and numerical studies. The model applied in this paper refers to those
described among others in [1-5]. The approach adopted combines the discrete
vortex method with the panel (boundary element) and the diffusion velocity
methods. It provides a grid-free approach to model vortical viscous flows past
solid bodies. The paper presents a brief overview of the modelling technique fun-
damentals and some initial results on the flow past a square cylinder impulsively
started from the standstill to a uniform motion. The flow is studied in a frame
of reference fixed to the cylinder.

1.1 Basic vorticity formulations

The motion of an incompressible fluid in a two-dimensional domain D c R?,
internally bounded by 8D (0D corresponds to the solid body surface), is defined
in terms of vorticity by the equation of vorticity transport and the condition that
the velocity field is divergence-free:

6&/’ 1 2
&= > = l
S + (u-V)w Rev w, (1)
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V iu=0, (2)

where u = u(z, t) is the fluid velocity, € R? is the position vector, ¢t >0 is time
and Re is the Reynolds number. The vorticity w = w(z,t) of the flow field is
defined by the equation:

wk =V xu, (3)

where k is a unit vector normal to the flow field plane. The flow field satisfies
the following boundary conditions

u=0at dD; wu(r,t) —>u, as |z|] — 4)
and the initial condition
u(z,0) given for z € D. (5)

Kinematic relationship between the velocity and vorticity fields is defined by the
zeneralized Biot-Savart law [6,7] applied to the flow area bounded by 0D

_ 1 fuw(E)kx(xz-2) ;1 [ (nxug) x (x—2'(s)) .
u(z) _27r/ " _$/|2 dzx 2”8/;{ - —x’(s)|2 ds + Ueo, (6)

where n is the outward unit vector normal to the 8D boundary, ug is velocity at
the boundary, 4, denotes velocity of the uniform free stream at infinity, s is the
fistance measured along the boundary and #/(s) is the positioning vector of the
relevant point at the boundary. The boundary integral accounts for the vorticity
distribution on the D boundary. The contribution from source distribution on
the boundary is omitted here. For given vorticity distributions in the flow field,
the specific strength of the vortex sheet on the boundary is obtained from Eq. (6)
zpplied to points z(s) located on the boundary [8]. This leads to the Fredholm
tvpe integral equation:

v(s)k x (x(s) — z(s")) , ,
BZ){ z(s) — z(s)| 2 ds' =U(2(s)) + 2r (u(z(s)) — ueo), (7)

where + is the vortex sheet strength. The U (z(s)) vector represents velocity in-
iuced by the vorticity in the fluid and u(z(s)) is defined by the velocity boundary
values. The uniqueness of Eq. (7) solution requires fulfilment of the principle of
total vorticity conservation in both the fluid and solid domains:

% / =0 (8)
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which implies that the circulation around a contour far from the body remains
constant (Kelvin circulation theorem). Consequently, if total vorticity is initially
zero, it remains zero also later on.

Let the half-length of the square cylinder cross-section side, b, and the value
of upstream uniform flow velocity, 4, represent the reference length and flow
velocity, respectively. All quantities were non-dimensionalised as follows: z’ =
2/b, t' = tuc/b, ' = Ulus, I = T/uwh, V. = 4/tioo, &' = whltig, Rei=
bus/v. For the sake of simplicity, the superscript primes are dropped from the
dimensionless quantities in the considerations.

2 Discrete vortex method

The vortex methods are derived and analyzed in many references [7,9-12], so
only a brief description of the method is provided herein.

It follows from Eq. (1) that in an inviscid case (Re = oo) the vorticity
associated with fluid elements remains constant along their trajectories. The
essence of the vortex method is to discretise the vorticity field by means of the
equation:

N
w(@,t) = Tifs(z — i(t)) (9)
=1
such that

N
= w( )d ¥ (10"

where T'; is the strength (circulation) of the i—th discrete vortex located at point
z; = ;(t) at time ¢, N is number of vortices and f, is the shape function approx-
imating the Dirac § — function. The shape function, usually radially symmetric.
represents vorticity distribution due to a discrete vortex and is selected so that

1, /=
fo(@) = ;f <7) ) (11
with a 2D normalization

/ Beide — 1. (12
R2

where o is a smoothing parameter.
To satisfy the vorticity convection equation, the velocity of each vortex must

be given by the value of the velocity field at its actual location. The trajectories of
discrete vortices are approximated by a solution of the following Cauchy problem
dly

gt —

0, (13
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dz;

d; =u(zi,t), =zi(to) = Zo, (14)
with ¢ = 1,.., N. The velocity induced at z;(t), by system of discrete vortices is
defined as:

|z — 5| >
u(z;,t) = F N 15
z Z el (5)
with

¢
F(Q) =2 [ fals)sds, ¢=1, (16)
0

where 7 = |& — z;|. In the case of the shape function of Gaussian type [9], which
is used here, the smoothing function for the Biot-Savart integral is

2

P =1 s, (17)

In this study, the above system of ordinary differential equations is solved nu-
merically using the Euler time integration scheme of the first order:

et = 2f L u@Eh)At+ 0(AR2), (18)
where At is the time step, k denotes the k™ time step, t;, = kAt, and m — i
s the position of the i*® discrete vortex at the &t time step.
3 Diffusion velocity method

The purely Lagrangian diffusion velocity method is based on application of
“ick’s law to the vorticity flux [13]. After some transformations Eq. (1) takes
the following form:

Ow
it 2 19
ot L e Re wVw) {19)
where u. denotes the convection velocity. Considering
U : \Y (20)
= - w
: Rew

as the diffusion velocity, Eq. (19) can be rewritten as

17
ZL 4V [w(ue +ug)] =0, (21)
ot
Hence, the effect of viscosity is taken into account by adding the diffusion velocity

to the convection velocity of each vortex and the right hand side of the ordinary
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differential equations of discrete vortex motion is complemented by the term
representing diffusion velocity

dx i
dt

= ’U,C(thi, t) + ud(xi, t), x; (to) =270: : (22)

According to the discrete vortex approach, the diffusion velocities, as well as
vorticity distribution, are expressed by a sum of contributions of all the vortices

N e
e et e 3T —25) exp <Jm—ﬁ|—> . (23)

motRe w; o2
J=1

where

_71'0 ZF exp< _xj| ) : (24)

4 Boundary conditions

Due to the inviscid impermeability and the viscous no-slip conditions the
flow velocity vanishes at the solid boundary. While the impermeability condition
can be satisfied approximately by potential flow cancelling the normal velocity
component at the boundary within the panel method [14,15], the no-slip condition
is satisfied by generating new vorticity on the surface of the body and introducing
it into the flow field in order to simulate the physical process of vorticity creation
in the real flow [16,17].

4.1 Normal boundary condition

In order to obtain the vortex distribution at the 8D boundary, the contour
of the body is divided into M short straight-line segments or panels and some
distribution of vortex singularities is assumed at each panel. The impermeability
boundary condition applied at control points, placed at mid-points of the seg-
ments, and the Kelvin theorem, Eq. (8), constitutes a system of linear algebraic
equations with unknown values of vortex strength ~;

M

The a;; coefficients are elements of the transfer matrix representing normal ve-
locity component at the i-th panel induced by the j-th panel vorticity. The
components b; of the rhs vector are the normal velocities at the i-th panel control
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soint induced by free vortices in the flow area and by the uniform stream. For the
surpose of this study, the ~(s) distribution at the boundary is approximated by
‘e resultant singularity vortices of strength A; placed at panel junction points.
“he last equation in the system of linear equations (25), represents the total
orticity in the flow system and can be reduced to the form:

M N
Z/\,-Jer“i:O. (26)
i=1 =1

“orward method to solve such a system is to ignore one equation, e.g. the equation
“escribing the impermeability condition at a control point of minor significance,
ssually in the central part of the streamlined body rear surface.

Thesystem of M+1 equations with M unknowns is overdetermined. The straight-

4.2 Tangential boundary condition

To model the vorticity diffusion from the solid surface, the vortex sheet corre-
sponding to the no-slip condition is partitioned into vortex sheet elements centred
it the control points. Then the vortex sheet elements are replaced by discrete
wortices, which are inserted into the flow field close to the streamlined surface.
“he strength of these vortex sheet elements is equal to the tangential velocity of
he flow relative to the solid wall.

Assuming constant vorticity within each element, the strength of generated
wortices can be considered equal to the total vorticity of the relevant vortex sheet
glements

Li=7-As=—ugls, i=1,.., M, (27)

where ug; is tangential velocity of the flow at the i-th control point and As is the
ength of the relevant vortex sheet segment.

There is no rigorous criterion to determine the distance between the solid wall
snd the position where newly created vortices should be introduced into the flow
“eld. In this study, new vortices are placed at creation points situated in front
»f the control points. The distance between the vortex generation points and the
soundary is assumed to be equal to the smoothing parameter and slightly larger
“han panel length, that is 1.08As.

5 Computational procedure

The simulation process of the vortex flow evolution in each time step consists
i the following operations:
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1. Determination of the vortex distribution over panels satisfying the imper-
meability and the circulation conservation conditions.

2. Calculation of the convection and diffusion velocities of each discrete vortex.

3. Computation of the tangential velocities at the panels and creation of new
discrete vortices.

4. Introduction of a series of new discrete vortices along the contour.

5. Displacement of all discrete vortices according to the velocity distribution.

Whenever a discrete vortex already in the flow crosses the contour of the body,
it is ‘reflected’ back into the flow field. Also for computational reasons, in calcu-
lations of the diffusing velocities, Eq. (23), discrete vortices with opposite sense
of circulation were treating separately to avoid producing unreasonably large ve-
locities, [18].

6 Results and discussion

The evolution of a vortical unsteady flow past a square cylinder moving
with constant velocity in still liquid has been simulated for Reynolds numbers
(Re = buo/v) 10® and 10* with three different angles of attack (b = 1 and ue, = 1
for this study). The starting point for the evolution was the potential flow formed
immediately after an impulsive start of the cylinder. The dimensionless integra-
tion time step was set at At’ = Atb/us = 0.05. The surface of rectangular
cylinder was represented by M = 128 equal panels of length As = 0.06255
The distance between the free vortex creation points and the body wall was
¢ = e/b = 0.07. The radius of smoothing parameter was ¢/ = o/b = 0.07
(0.035 of the body size). Some initial qualitative results of simulations carried
out are presented here.

The development of the wake behind a square cylinder for angle of flow ine-
dence o = 20° at Reynolds number Re = 10* is shown in Fig. 1. Discrete vortes
distributions at dimensionless time ¢t = 5,10,15 and 20 after an impulsive stast
illustrate the growth of vortex structures in the wake in the course of time. &%
every moment there is an intense concentration of discrete vortices in the vicin
of the body to be stated. After preliminary clustering of discrete vortices, a laz
vortex structure develops. At the beginning, the starting vortex is created ¢l
to the rear side. Afterwards, alternate large scale vortex formations occur.
Fig. 2, a similar sequence of wake development is shown for the same time pos
and inflow stream direction, but with a smaller Reynolds number, Re = 1
Although flow detachment takes place at the same fixed points as in the case
Re = 104, which is usual for flow past sharp edged obstacles, the comparison
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Figure 1. Development of the vortical wake behind a square cylinder after an impulsive start
from rest at dimensionless time ¢: a. 5, b. 10, c. 15 and d. 20, for angle of flow
incidence a = 20° and Re = 10%.

Figs. 1 and 2 shows, there is a slight difference in the structure of separation re-
zions and large scale vortices. The effect of Reynolds number on the flow pattern
= revealed here in form of discrete vortices distribution. The clusters of vortices
are more widely spread at lower Reynolds numbers. The details of flow pattern
ot initial stage of its development for three different angles of flow incidence,
» = 0° 10° and 20°, at Reynolds number Re = 10* are compared in Fig. 3. By
somparing vortex distributions and instantaneous streamlines at dimensionless
“me t = 5 one can see the essential difference in the early stage of wake evolution
setween the case of zero angle of flow incidence and the other configurations.

In the case of zero angle of incidence, a symmetrical detachment takes place
# the front edges and two vortex separation regions develop along cylinder sides.
The discrete vortices progressively concentrate behind body forming pairs of clus-
“ers, which grow up downstream of the obstacle while remaining symmetrical in
=spect to the wake axis. This initial formation of two symmetric vortices be-
“ind the cylinder is evident from the velocity vector fields plotted in Fig. 4. In
wontrary to the above, at larger angles of incidence the flow pattern shows full
ssymmetry and only one large scale vortex is formed behind the cylinder. For-
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Figure 2. Development of the vortical wake be- Figure 3. Flow patterns (discrete vortex dis-
hind a square cylinder after an im- tributions and instantaneous stream-

pulsive start from rest at dimension- lines) around a square cylinder at
less time ¢t = 5, 10, 15 and 20, for time ¢t = 5 with Re = 10* for angles
angle of flow incidence o = 20° and of flow incidence a = 0°, 10° and 20°.
Re = 10°.

mation and development of such a vortex is shown also in the velocity plot in
Fig. 4. The shear flow behind the front bottom edge reattaches to the side face
of the cylinder and finally separates from the rear edge. Discrete vortices, which
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spproximate this shear layer just downstream the edge, continue their motion
= direction tangential to the side face. Moreover, at separation regions near
» the side and rear faces, various temporary tiny clusters of discrete vortices,

representing recirculating flow zones, originate.
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" wure 4. Velocity vectors of the flow around Figure 5. Velocity vectors of the flow around

a square cylinder after an impulsive a square cylinder after an impulsive
start from rest at time ¢ = 5 with start from rest at time ¢t = 20 with
Re = 10* for angles of flow incidence Re = 10* for angle of flow incidence
o = 0° and 20°. o =202;

The vector velocity field formed at dimensionless time t = 20 in case of the
swidence angle a = 20° is shown in Fig. 5. This velocity field corresponds to the
-rete vortex distribution shown at the bottom of Fig. 1. It is characterized by
summetrical flow separations from the edges of the cylinder and by flow velocity
“imost tangential to the bottom face. As was the case in Fig. 4, intense recircu-
“iion regions in the wake are clearly visible. Single recirculation zone, behind
e body, leading to formation of a large scale eddy in the nearby wake and the
weviously formed vortices with staggered pattern downstream in the wake are
1so easily distinguishable.

I
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7 Summary

A numerical model, based on a combination of the vortex method, diffusion
velocity and panel methods, has been applied to simulate a two-dimensional un-
steady, incompressible, viscous separated flow past a bluff body. Calculation was
carried out for a square cylinder flown around with different angles of attack and
at moderate Reynolds numbers. Reasonable patterns of flow separation and vor-
tical wake development have been derived. Although a general pattern of flow
evolution is well reproduced, further development of the model and the computer
code are necessary to better simulate details of the fluid flow and to make com-
putations more efficient. It is assumed that future work will include the study of
more elongated rectangular cylinders.

Received 5 November 2003
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