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Summary. Using the quasi-geometric optics formulation for media with inhomogeneous index
of refraction, the problem of determining the electromagnetic field distribution at the mirrors of
an optical resonator filled with a medium displaying a parabolic variation of the index of refraction
has been reduced to a simpler problem of an equivalent empty optical resonator. From the derived
system of integral equations the equivalent generalized parameters of the considered resonator are
determined. The presented approach allows to compare the diffraction losses, the resonant
conditions and the mode patterns of a resonator in question with respect to an equivalent one.

Introduction. The majority of papers on the subject of laser resonators deal
with the theory of empty optical resonators or resonators filled with optically homo-
geneous media. However, the active media of lasers may, for various reasons (e.g.
[1—7]), be optically inhomogeneous. An inhomogeneous medium inserted between
the resonator mirrors affects the properties of the optical resonator, i.e. it changes
the mode patterns, diffraction losses and conditions of resonance.

Following the increasing interest in resonators, filled with inhomogeneous media,
the demand arises to solve the problem of the field distribution, diffraction losses
and resonant frequency for such resonators. The exact solution of Maxwell’s equation
with appropriate boundary conditions, even when available, is too complicated
to be used for determining the information about the resonator in question. In the
literature, there is the Kogelnik’s well-known approach [8] based on the ray matrix
formulation of geometric optics and the imaging rules obtained with the use of
formalism of Fresnel diffraction theory.

The purpose of this paper is to present the theory of an optical resonator with
a medium displaying a parabolic variation of the index of refraction developed
from the formulation of quasi-geometric optics for inhomogeneous media proposed
by Eichmann [9]. The choice of such a form of the index of refraction is justified
since the parabolic variation of the index comprises a broad variety of functions
describing the actual distribution of the index of refraction. EBichmann’s formu-
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lation of quasi-geometric optics for inhomogeneous media is analogous to Feyn-
man’s approach [10] to quantum mechanics.

Quasi-geometric-optics approach for media of inhomogeneous index of refraction.
Assume that at any surface o; of an inhomogeneous medium, the distribution of the-
electromagnetic field ¥ (xy, yy,2;) is known. The distribution w (x,y, z;-+¢),
where € is a small distance in the direction of coordinate z can be found from the
relation [9, 10]:

dx, dy,
4 4

)y yzta=] | exp[~kS(, y, %1, 1, 1w (61, 71, 21)
where 4 is an e-dependent normalization constant and k is the wave number in the:
medium. The optical path length

zi+e
(2) S(x:y7x15y1;€)= f L(Xay;;C,J.’,Z)dZ

is the integral of the optical lagrangian
3) L(x, 3, %, y, D)=n(x, 3, 2) (1+x2+y?)?*

taken along the path which makes the optical path length (2) an extremum; z (x, y, z)
is the inhomogeneous index of refraction of the medium. The dots represent
differentation with respect to z. Eq. (1) is true in the limit ¢—0.

The integral (1) has been presented for the first time by Feynman [10] as the
expression of the Huygens’ principle for matter waves in his approach to quantum
mechanics. Basing on Eq. (1) Eichmann [9] proposed the formulation of quasi-
geometric optics for media with inhomogeneous index of refraction.

At any arbitrary distance z, ¥ (x, y, z) can be obtained by iterating Eq. (1) by
distances ¢ along the z direction until z is reached, resulting in

(4) V/(X,y, Z)=fch(x’y7 z, xbyla Zl) l//(xlﬁyla Zl) dxl dyla

where the kernel of integral (4)

o) o0 1

ot ] 2
(5) C)C(x9ya Z, x1,J’1,Z1)=hmZZ f fexp[_lk S(xj+15yj+19 xjsyja G]X:
e — j=1

£-0
=4}

dx, dx; dx, dy, dys dy,
X . .

4. 4T A A A
= f exp [—ikS(x, ¥, z, %1, V1, 21) Dx (2)-Dy (2)

is the continuous-path integral [11]. In Eq. (5) it is assumed that x;,,,, },4+, are
the coordinates of the surface at which the disturbance w (x, y, z) is searched for.
The integral equation (4) gives the field distribution v (x, y, z) at any surface o (x, y, z)
if distribution w (x4, yy, z;) at a surface o; is known.



[347]Integral Equations and Equivalence Parameters of an Optical Resonator 41

The problem now reduces to the evaluation of an appropriate kernel function
for each particular inhomogeneous medium. At present, it can be done only in very
special cases [11].

The kernel of integral equation of a medium having a parabolically varying index
of refraction. Assume that the inhomogeneous index of refraction of a medium can
be expressed as:

1

1
. RN 2 =2 2 2
(6) n(x,y) =1 T

where w is the characteristic parameter of the medium. It is also assumed that the
medium is the weakly focusing one, i.e. the parameter w is small against the unity

@) lw|<1.

Expanding the optical lagrangian (3) in a series and taking also into account that
for paraxial rays, the ray slopes are

® Xl <1, Iyl <1,
yields
(93) L(X, ya )}s J.;):1+L0h(x7y: ;C’.}')),
where
. L, 1 1. 1
(9b) LOh(x9y5 x9y) :7)(:2 __2—602 X2+—2‘y2 —'—2‘602_}/2

is the optical analog of the classical lagrangian for two-dimensional harmonic
oscillator.
Inserting Eqs. (9) into Eq. (2) and integrating from z, to z, one obtains

(10a) S(x, ¥, 2, X1, Y1, 21) =2— 21+ Son (X, ¥, X1, Y1),
where
(10b) Son(%, 75 %1, y1)= [ Lon(x, 3, %, 3) dz

is the optical analog to the classical action for two-dimensional harmonic oscillator®

For the optical lagrangian L and optical path S given by Egs. (9) and (10)
respectively, the continuous path integral (5) can be solved [11] to yield the kernel
function of integral equation of a medium displaying a parabolic variation of the
index of refraction in a closed form:

iok

(11) CK(Xays Zy, X15 V15 Zl)=|: :I'exp [—ik(Z—Zl)]X

27 sin w (z—z;)
—iwk

*exp { [((x*+»*+xi+pD) cos @ (z—z21) — 2 (xx; +yy1)]}-

2sin w (z—z4)

The kernel (11) is the same as in the case of a two-dimensional harmonic oscillator
[11] with the exception of the factor exp [—ik (z—z;)], which represents the effect
of the disturbance propagation in z direction.
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System of integral equations and equivalence parameters of an optical resonator
filled with a medium with index of refraction varying parabolically. Consider an
optical resonator formed by two spherical (or flat) mirrors M; and M, spaced at
a distance d, as shown in Fig. 1. The radii of curvature of the mirrors are R, and

Fig. 1. Geometry of an optical resonator. The mirrors are assumed to be rectangular of widths
2a;, 2b; and 2a,, 2b,, respectively

R,. The mirrors are assumed to be rectangular*®) of the dimensions 2a,, 2b; and
2a,, 2b,, respectively. All the resonator dimensions are assumed large against the
wavelength. It is assumed, additionally, that

(12) a,<d, by<d, (j=1,2)

which is typical for the optical resonators. All the space between the mirrors is
filled with the medium defined by the parabolically varying index of refraction (6).
Identifying the surfaces of the mirrors M, and M, with the surfaces ¢, and ¢ from
the previous section, it is seen that the integral equation (4) with kernel function (11)
gives the distribution of electromagnetic field at mirror M, of the resonator with
a medium described by Eq. (6) if the distribution at mirror M, is known. Analogously,
the distribution of electromagnetic field at the mirror M, can be expressed by the
one at mirror M,.
Introducing the definition of the resonator mode in a steady state [12]

(13) = P1 Y, (=1 or )

the resulting system of integral equations describing the distribution of electro-
magnetic field at mirrors M, and M, yields

ik [ ik :
PO YD (e, ) =5 exp(—ikd*) [ [ exp) = [tyD el

(14) +(x§+y§) gz—Z(xl Xy+)1 yz)]} ‘l//(l)(xu y1) dx, dyy,
(1)% , (1) — ik -1 J% ik 2 2y %
PO Y (g, ) =5 exp(—ikd®) [ [exp| =5 TRy gl

+(x§+y§) g:—ZOH X+ )’2)]}’V/12) (x2,y2)+dx, dy,,

*) The presented consideration is valid evidently for the circular mirrors of diameters 2a,
and 2a,, respectively.
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where:
(15) yD*=exp [—ik (d*—d)] yV,
(16) y@* =exp [—ik (d*—d)] y?,
- e sin wd
( ) - w s
d*
(13) gi=coswd— Rz
d*
19 g»=cos wd — r

The indices 1 and 2 are referring to mirrors M, and M,, respectively. The system
of integral equations (14) has been obtained from Egs. (4) and (11) with the aid
of the following approximations:

2 2
X1+y1
(20) HE TR
X545
@ zzgd—;T,
and
(22) z,—z,2d

in the trigonometric functions, reasonable in view of the assumptions (12).

By definition (13) it is meant that in a steady state the field distribution at the
Jj-th mirror reproduces itself within the multiplicative constant ¢ after each wave
transit in the resonator, the number g specifying the successive transition of the
wave.

The factors ) and y‘?), named the resonator eigenvalues specify the diffraction
losses and phase shift, to which the waves are exposed during each transit in the
resonator. Apart from the difference of resonator eigenvalues, the system of integral
equations (14) describing the distribution of the electromagnetic field at mirrors
of the optical resonator with the medium having the parabolically varying index
of refraction (6) is the same as that for an empty optical resonator [13] described
by the generalized parameters [14]%):

*) The resonator with circular mirrors is described by three parameters only, namely by:

k * * *
o a; az a; _
e G, — 81, G,= + 82
2nd a, a

where 2a3 and 245 are the diameters of the mirrors.
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_kVa a5 b b, wkVa,a; b b,

23)

2nd* 2nsinowd
# .
(24) G, =% gt (cos ad= ;1 Smwwd),
(25) G2=a'gg§ =2(cosa)d— : Eiﬂwd),
a; aq R, 0]
(26) G3=é£—g’f =ﬁ(coswd—L Si—nwd),
b, b, R, w
27) G,= bz g: :7133 (COS wd— S o)d) ,
b} b, R,

where 2a7, 2b; and 245, 2b, are the dimensions of mirrors of such resonator, d*
is the distance between these mirrors, and the radii of curvature R} and R} of
mirrors are contained in conventional parameters [13]

d*
(28) gi=1 TR

d*
(29) Bh=1——

From the integral equations (14) it follows that the mode patterns of considered
resonator and the empty one are scaled versions of each other. The differences
between the empty resonator eigenvalues y™%, y@* and the eigenvalues ¥, y*)
of the resonator in question are expressed by the factor exp [—ik (d* —d)]. Physically
it means that the diffraction losses of both resonators are the same, and there is
only a small difference in the corresponding resonant frequency.

Therefore, any empty optical resonator having the generalized parameters
(23)—(27) is equivalent, in a sense given above (with exception of the resonant
conditions), to the considered resonator with the medium having the parabolically

varying index of refraction (6).

Discussion. It has been shown that the problem of the field distribution at the
mirrors of a resonator filled with a medium of the index of refraction (6) may be
reduced to a simpler one of the field distribution at the mirrors of an equivalent
empty optical resonator described by the parameters 23)—@27).

The values of the equivalent resonator parameters N, Gy, G,, G3, Gy (23)—(27)
are equal to the appropriate parameters of the resonator with an internal lens-like
medium derived by Kogelnik [8] on the basis of the ray matrix formulation of
geometric optics and the imaging rules following from the formalism of Fresnel
diffraction theory. The other conclusions presented here are in good agreement
with those resulting from Kogelnik’s theory. These facts suggest the equivalence of
Kogelnik’s approach and the one developed here.
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The direct advantage of the presented approach is that the information about
the resonator of interest are enclosed in the system of integral equations for an
empty optical resonator, the properties of which have been studied intensively
for over ten years.

It is obvious that the quasi-geometric approach is also valid for media with
homogeneous index of refraction (w=0). In the case of homogeneous medium one
can obtain the well known system of integral equations for an empty resonator,
earlier developed from the Huygens—Fresnel principle or other methods more
complicated mathematically.

Appendix

A partly filled resonator. The purpose of this appendix is to present the integral equations and
equivalence parameters of an optical resonator partly filled with an inhomogeneous medium.
Consider an optical resonator with an inhomogeneous medium occupying only a part of the
space between the resonator mirrors, as shown in Fig. 2. All the resonator dimensions are assumed
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Fig. 2. Geometry of an optical resonator partly filled with an inhomogeneous medium. All
dimensions of mirrors are the same as in Fig. 1
o3 and o4 denote the transverse surfaces of a medium; d, is a length of a medium. d; and d5 specify
the location of the medium in a resonator

to be just the same as in previous sections (see Fig. 1). The transverse dimensions of an inhomo-
geneous medium is regarded as infinitely large. It is assumed that the medium displays a parabolic
variation of the index of refraction.

According to Egs. (4) and (11) (taking «»=0) of the main text, the field distribution v ®)(xs, y3,23)
at the surface o3 can be expressed as

(30) w3 (x3,y3, 23)= f Ka1 (X3, 3, 23, X1, Y1, 20) W (x1, 1, 21) dxy dyy

Gy

where the kernel function is

- ik : ik () | 2 2) a2
Bl Kax=——exp (—ikdy) exp | ———— [ (]H3D TP & +7) 2 (1 X3 431 7))
1 1
and
d
(32) 857)=1-%-

33) gP=1.
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Taking w+#0 or =0 where necessary, one can analogously obtain the field distributions
w*) (x4, ya, z4) at the surface o, and w(® (x,, ., z,) at o, in the forms:

34) w® (x4, ya, 24)= f Kaz (Xa, Yar Za, X3, ¥3, 23) W) (x3, y3, 23) dx; dys,
o3
(35) y@ (x2,¥2,22)= f Kaa (X2, Y2, 22, X4, V4, Za) l//(4) (X4, Y4, 24) dxs dys,
[
where
C ik = ik (1) (2 1 4,2 (2) (2 2
(36) Waz= gt %P (—ikd,) exp | — o [g5) S +y)+8ly) (xf +r2)—2 (x3 xaty3 ¥l
2 2
g sinw d,
€0 L=
(38) g=¢P=cosw d,,
C ik ; ik (1) (42 2 (2) (42 2 ]
39) Nza= e P (—ikds) exp g le5,) O, +y)+857) (0 +¥7)—2 (xa x2+ya .}’z)]J’,
3 3
0) g0=1,
. d3
(41) ggi’=1— i

Combining Egs. (30), (34) and (35), and interchanging the order of integration, one can find the
field . (x2, y2, z2) at the mirror M, expressed by the field wy (x1, y1, z1) at the mirror M; as

(42) w® (x2,y2, 22)= f K (X2, Y25 22, X1, Y1, 2) WD (x1, y1, 20) dxy dyy
(5%

where

@3) K= [ [ KparWas K1 dxs dys dxa dy..
G4 03

The integration of Eq. (43) can be performed by noting that [15]

+ oo

e 2
(44) f exp (—iax®-iyx) dx= ]/l exp (zl—) .
ia 4a

—00

With this Eq. (43) becomes

ik _ ik P
(45) gy KD (—ikd) exp { ~ lgf (x2+y2)+g, (2 +y2)—2 (x1 x>+ yz)]} :

TT *
where:
sin wd,
(46) d*=(d+d;) cos wdy+——— (1—w? d, d3),
o
%
47 g:=cos o d,— o ds sin od,— o
1

d*
48) g: =cos wd,—w dy sin wd, — "
2
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Introducing the definition of the resonator mode (13) as before, one can obtain the resulting system
of integral equations describing the distribution of electromagnetic field at mirrors M; and M,
of an optical resonator filled with a medium of parabolically varying index of refraction in the form
of Egs. (14) with (15) and (16) where the parameters d*, g*, and g, are expressed by Egs. (46), (47)
and (48). Therefore, according to the considerations of previous sections any empty optical resonator
having the generalized parameters N, Gy, G», Gs, G, with the values of d¥, g’: and g; given by
Eqgs. (46)—(48) is equivalent to the resonator filled partly with the medium of parabolically varying
index of refraction (6). The problem has been reduced again to the case of an empty optical resonator.

Following Kogelnik’s approach [8] to a resonator partly filled with lens-like medium one
can show that the parameters N, Gy, G», Gs, G4 predicted by the present analysis are identical
with those resulting from Kogelnik’s theory.

In the discussion of parameters (46)—(48) it appears that the properties of a resonator with
medium occupying a part of the space between the mirrors are not only determined by the length
of medium but also by the location of medium with respect to the mirrors.

The author is grateful to Dr. Z. Rozkwitalski for his interest in this work.
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FO. Mu3apaunk, CHCTeMa HHTErpajibHBIX ypaBHEHHHl H IAPAMETPbI SKBHBAJIEHTHOCTH ONTHYECKOrO
Pe30HaTOpa C HEOJHOPOIHOM Ccpeoii — NPHO/IKEHNe KBA3H-TeOMETPHYECKOH ONTHKH

Conepxamne. Ha ocHOBE (opManm3Ma KBa3H-TEOMETPUYECKOX ONTHKH IS CPEIbI C HEOTHOPOL -
HBIM KO3(Q(HIWEHTOM IIPEIOMIICHUs, OpOGIleMa paclpeleNeHus SIeKTPOMATHHTHOTO MO Ha
3epKaax ONTHIECKOTO PE30HATOPA, KOTOPKIA BRIIOIHEH CPeoi ¢ KOIDGOUIIMEHTOM IpeIOMIICHHS
HM3MEHSIOMMUMCS COIIACHO Napaboiie, CBOAUTCS K YOPOINEHHON 3a/ade TaK Ha3b[BAEMOTO JKBH-
BAJICHTHOTO MACCHBHOTO DEe30HaTOpa. M3 MOIydYEeHHBIX WHTErPAlbHBIX YPABHEHHH OIpEIENICHBI
9KBUBAJICHTHBIE OGOOIMEHHEIE mapameTpsl pe3oHaTopa. IlpencTaBneHHEBI B HacTOsmiel paGoTte
MONXOX IAeT BO3MOXHOCTE CPaBHUTH NUGdPpAKIWOHHBIE HNOTEPH, YCIOBHS DPE3OHAHCA, a TAKKE
pacmpeznielieHde Mo MOOB PACCMAaTPHBAEMOIO 3/1€Ch M JKBHBAJIIEHTHOTO PE30HATOpA.
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