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ABSTRACT

2D Particle Image Velocimetry (PIV) measurements were performed in a wire-
nonparallel plates type electrohydrodynamic (EHD) gas pump. Using simultaneously
two CCD cameras allowed obtaining high resolution vector maps which illustrate the
flow patterns generated inside the EHD gas pump.

Index Terms—Particle Image Velocimetry, electrohydrodynamic pump, Corona discharges,

Non-thermal plasmas

1 INTRODUCTION

WHEN a strong electric field is applied between high voltage
and grounded electrodes in a gas medium, a corona discharge is
formed by ionization of the gas molecules. Thus ion flux along
the electric field transfers its momentum to the neutral molecules
and results in the so-called ionic wind or an
electrohydrodynamically induced gas flow. When the electrodes
configuration forms an unsymmetrical electric field distribution,
the unidirectional gas flow can be generated, ie.
electrohydrodynamic (EHD) gas pumping occurs. A several
electrode geometries have been proposed for EHD gas pumps
such as needle-to-mesh, needle-to-ring, wire-to-rod, wire-
nonparallel plates, etc. [1-7].

In this work, the performance of a wire-non-parallel plate push
fan (PF) type EHD gas pump is studied by Particle Image
Velocimetry (PIV) for measurement of the flow patterns. It was
already demonstrated that the PIV technique is capable of
measuring the flow velocity fields in the conditions typical of the
EHD pumps [8-11].

The dimensions of EHD gas pump as well as electrodes
configuration are the same as reported in [7], where the flow
characteristics (pressure drop and mean flow velocity at the
pump exit) of the EHD gas pump were given. These
characteristics show that without detailed study of the flow
patterns inside EHD gas pumps, only general conclusions such as
the generated flow is turbulent or re-circulating laminar could be
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made. Therefore, to understand the flow behavior in the EHD gas
pump it is necessary to investigate in detail the velocity flow
patterns near flow driven electrodes.

2 EXPERIMENTAL SET-UP

The EHD gas pump used in this experiment was a box
made of transparent acrylic plates of a thickness of 10 mm.
The internal dimensions of the box were 120 mm x 35 mm
x 50 mm. Two engraved slits with 3° convergent angle were
made in two sidewalls (Figure 1). Two acrylic plates
covered with grounded electrodes could slide-in and off in
the engraved slits. When these plates with plane grounded
electrodes were placed in the slits, the cross sections of the
EHD pump inlet and outlet were of 35 mm x 24 mm and 35
mm x 12 mm, respectively. The grounded electrodes (75
mm x 35 mm) were made of aluminum tape of a thickness
of 50 pm. They could be shifted along the acrylic plate
base, changing their positions in respect to the wire
discharge electrode. The discharge electrode was a
stainless-steel wire of a diameter of 0.23 mm and width of
35 mm, placed parallel to the plane grounded electrodes.
The position of the corona wire electrode was always
60 mm from the EHD pump outlet. Two positions of the
grounded electrodes were set: 6 mm from the EHD pump
inlet (the pump type called PF-A) and 36 mm from the
EHD pump inlet (PF-B) (Figure 1). Two acrylic boxes
(110 mm x 140 mm x 400 mm) were connected inlet and
exit sections of the EHD gas pump then both ends were
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Figure 1. EHD gas pump dimensions and electrode geometry (PF-A and PF-
B).

connected by a plastic tube (diameter = 6 cm). to form a
closed flow loop.

dc high voltage was supplied to the wire electrode through
a ballast resistor (10 MQ) from a dc power supply (Spellman
SL300) (Figure 2). The applied voltage was measured using a
high voltage probe (Tektronix, P6015A).

CCD cameras

Laser sheet

A\

Telescope

EHD pump

HV power supply

Figure 2. PIV experimental set-up.

The PIV measurements were carried out using a PIV
equipment consisted of a twin second harmonic Nd-YAG laser
system (A=532 nm, pulse energy 50 mJ), imaging optics, two
CCD cameras and PC computer equipped with Dantec Flow
Manager software (Figure 2). The laser sheet, which defines the
measuring plane, of a thickness of 1 mm, formed from the Nd-
YAG laser beam by a cylindrical telescope, was introduced into
the EHD gas pump. Cigarette smoke particles (0.5-1 pm
diameter [12]) were used as seed tracers. The influence of the
seed particles on the EHD flow is discussed in [14] together
with optimization of particle size and density to exert minimal
influence on the flow. The PIV images were recorded by two
Flow Sense M2 CCD cameras simultaneously. Each camera
was capable of capturing two PIV images with minimum time
separation of 2 ps. The CCD camera active element size was
1186 x 1600 pixels. The captured images were transmitted to

the PC computer for digital analysis. The observation area of
each camera was a rectangle of 4.5 cm x 6 cm.

The both observation areas were set as shown in Figure 3,
with 1 cm overlapping region. During the PIV measurements,
two flow velocity vector maps were created, one for each
observation area. Since both cameras recorded images
simultaneously and the overlapping region was relatively wide,
stitching the vector maps was possible. The stitching was made
after averaging over 100 measurements into one flow velocity
vector map which covered almost the whole length of the EHD
gas pump. Using two cameras allowed obtaining the higher
resolution images and resulting vector maps were more detailed.
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Figure 3. PIV measurement observation areas for PF-A and PF-B pumps.
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Based on the measured vector maps, the existent flow
streamlines of a hypothetical 2-D flow were calculated.

3 RESULTS

The time averaged corona current-voltage characteristics
for PF-A and PF-B type EHD gas pumps for negative and
positive applied voltage polarities are shown in Figure 4.

The corona onsets started above 6 kV of the applied voltage. For
the voltages of 6-8 kV, the EHD recirculation flow pattern
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Figure 4. Time averaged corona current—voltage characteristics of PF-A and
PF-B type EHD gas pumps for negative and positive applied voltage
polarities.

appeared near the corona wire, however no significant
unidirectional flow could be observed. The overall unidirectional
flow towards pump exit occurred for voltages higher than 8-9 kV.

The flow velocity vector maps and the corresponding flow
streamlines in PF-A type EHD gas pump at positive voltage
polarity 8 kV and 15 kV are shown in Figure 5. It can be observed
that for a voltage of 8 kV (Figures 5a to 5b) a pair of vortices in the
upstream region (in respect to the wire electrode position) and
another pair of vortices in the downstream region are formed. The
generated flow velocity reaches a value of 0.6 m/s near the
discharge region. However, the x-component maximum velocity at
the inlet and exit sections of EHD gas pump is only 0.1 and 0.18
my/s, respectively. The reason of this weak pumping effect is the
formation of vortices which may block the flow along the EHD gas
pump as was suggested by Chun and al [13]. The flow velocity
vector map and the corresponding streamlines at 15 kV are shown
in Figures 5c-5d. It can be seen from these figures that the
upstream vortices were pushed to downstream direction, closer to
the discharge wire electrode. The downstream vortices were
scattered by the EHD flow, which is stronger than that at 8 kV.
However, still the significant slow down of the flow existed in the
central part of downstream region. The flow velocity up to 1.8 m/s
in the discharge region was measured. At the EHD gas pump inlet
and exit section, the maximum flow velocities were 0.47 and 0.96
ns, respectively.

The flow velocity vector maps and the corresponding flow
streamlines in PF-A type EHD gas pump for negative voltage
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polarity (8 kV and 14 kV) is shown in Figure 6. For the
negative polarity, increasing the applied voltage above 14 kV
often resulted in the spark discharge. Therefore, for this
polarity the PIV measurement was performed only up to 14
kV. However, when comparing the positive with the negative
polarity discharge one should notice that the time averaged
discharge current at the negative polarity is much higher than
that at the positive one for the fixed operating voltage.

Table 1. The maximum velocity values measured at inlet and exit
of EHD gas pump.

Applied Max. Max. Flow rate
voltage inlet exit Q [L/min]
V [kV] | velocity | velocity
U, [m/s] | Uy [m/s]
8 0.1 0.18 5
ngi;ge 12 0.32 0.62 16
15 0.48 0.92 24
8 0.14 0.28 7
NEF;?W 12 037 0.64 19
& 14 0.47 0.96 24
8 0.09 0.14 45
ngi;ie 12 0.28 0.58 14
15 0.39 0.76 20
8 0.08 0.2 4
N:F;t?ve 12 0.28 0.54 14
g 14 033 0.56 17

At 8 kV, the flow patterns formed in PF-A type EHD gas pump
for both voltage polarities are very similar (Figures 5a-5b and
Figures 6a-6b). However, at the negative polarity downstream
vortices are stronger and the upstream vortices are weaker than
that of corresponding one at the positive polarity. For higher
applied voltages, the difference in vortices size is even more
visible (Figures 5c-5d and Figures 6¢c-6d). At the negative
polarity, the maximum flow velocity x-component at the pump
inlet and exit sections were 0.48 and 0.92 m/s, respectively. This
is very similar to those obtained for the positive voltage polarity.

Figure 7 shows the flow streamlines for PF-B type EHD gas
pump for the positive (Figures 7a, 7c; 8 kV and 15 kV) and
the negative (Figures 7b, 7d; 8 kV and 14 kV) voltage
polarities. Also for this EHD gas pump type, upstream and
downstream vortices are formed, and similarly to PF-A type
pump, the upstream vortices are stronger for the positive
voltage polarity and the downstream vortices are stronger for
the negative voltage polarity. It can be noticed that both,
upstream and downstream vortices are more pronounced for
PF-B than for PF-A type EHD gas pump (Figures 5-7). For
both types of the EHD gas pump, PF-A and PF-B, the number
and strength of the vortices decrease with increasing operating
voltage, regardless the voltage polarity. However, even for the
highest applied voltage [i.e., 15 kV for the positive polarity
(Figure 7c) and 14 kV for the negative polarity (Figure 7d)]
the vortices are relatively strong in the downstream region of
PF-B type pump. This may cause a lower maximum velocities
obtained at the inlet and exit sections of PF-B type EHD gas
pump (Table 1).
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Figure 5. Flow velocity vector maps (a, ¢) and the corresponding flow streamlines (b, d) for PF-A type EHD gas pump for positive applied voltages.
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Figure 6. Flow velocity vector maps (a, c) and the corresponding flow streamlines (b, d) for PF-A type EHD gas pump for negative applied voltages.
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Figure 9. Velocity profiles measured at the exit section of PF-A type EHD
gas pump for positive voltage polarity.

Figures 8 and 9 show the crosswise flow velocity
profiles for PF-A type EHD gas pump at the pump inlet
(x=-54 mm) and the pump exit (x=54 mm), respectively,
for the positive voltage polarity. The flow velocity
profiles at the pump inlet are relatively flat because the
gas entering the EHD pump is not affected yet by the
discharge. On the other hand, the gas flow at the pump
exit area is strongly disturbed by the vortices formed
inside the EHD gas pump and forming non-monotonic M-
shaped velocity profile as shown in Fig. 9. Assuming that
the profiles of U, velocity component along the z axis at
the pump inlet are similar to the profiles of Uy velocity
component along the y axis as shown in Figure 8, then the
calculated volumetric flow rates are summarized in
Table 1.

4 CONCLUDING REMARKS

The PIV measurement of the gas flow for two different
electrode positions in EHD gas pump was performed. The
results show that the generated flow patterns are turbulent
and with distinct vortices. The vortices decrease with
increasing operating voltage. One can deduce from the
obtained flow patterns that the flow generated inside the
EHD pump is three dimensional. The vortices formed
inside the EHD gas pump have negative effect on pumping
capabilities of the pump since the vortices may block and
suppress the generated flow. The strongest pumping effect
(24 L/min) was observed for PF-A type EHD pump at 14-
15 kV, when the downstream (Figures 5c-5d) or upstream
(Figures 6¢-6d) vortices were scattered by the
unidirectional flow. However, further optimization of the
electrode geometry and discharge parameters is required to
minimize the formation of vortices inside the EHD gas
pump to improve its pumping capabilities.
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