

OPTIMISATION OF AXIAL TURBINE FOR A SMALL SCALE WASTE HEAT RECOVERY ORC SYSTEM

Łukasz Witanowski, Piotr Klonowicz, Piotr Lampart

TURBINE DEPARTMENT - CENTRE OF HEAT AND POWER ENGINEERING

Plan of presentation

- 1. Introduction
- 2. Organic Rankine Cycle
- 3. Case study
- 4. Parametrization
- 5. Methodology
- 6. Objective function
- 7. Discretization
- 8. Results
- 9. Conclusion

Selecting the best solution of a given problem with respect to the given criteria. Finding the extreme of a given function (or functions) in the given design variables domain.

- Optimisation allows us to improve efficiency of the machines
- Procedure for finding maximum/minimum of objective function
- Objective function, penalty function, boundaries
- Methods of optimisation wide range
- Reduction of flow losses:
 - profile loss
 - boundary loss
 - exit kinetic energy losses

Organic Rankine Cycle

250 200 150 100 50 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 Entropia [kJ/(kgK)]

T-s diagram of an organic fluid

Volumetric deviation from simple ideal gas law in T-s diagram of an organic fluid

Source: J. Harinck, D. Pasquale, R. Pecnik, P. Colonna, Three-Dimensional RANS Simulation of a High-Speed Organic Rankine Cycle Turbine, in: First Int. Semin. ORC Power Syst. ORC 2011, Delft, 2011.

Case study

- One stage axial turbine
- Number of stator blades 16
- Number of rotor blades 31
- Design parameters:
 - Rotational speed 40 000 rpm
 - Inlet pressure 845 kPa
 - Inlet temperature 485 K
 - Outlet pressure 20 kPa
 - Mass flow -0.3 kg/s
 - Working fluid Toluen

04.10.2018

Parametrization

Axial turbine

- Changing nozzle design parameters at the hub and the tip of blade (S)
- Modification of rotor profile shape at the hub and the tip of blade (R)
- Blade twist (R)
- Simple and compound circumferential lean (R)
- Simple and compound axial lean (R)
- Meridional channel modification (S+R)
- 52 changing parameters (S+R)

Methodology

- RANS (Reynolds-averaged Navier-Stokes) stationary simulations in ANSYS CFX
- $k-\omega$ SST turbulence model
- Periodicity conditions
- Gas model: NIST Refprop library
- Boundary conditions:
 - inlet total pressure, total temperature
 - outlet average static pressure
 - other rotational speed

Discretization

- Number of elements in stage:
 - Optimisation < 0.1 mln
 - Verification level 1 from 0.5mln to 10 mln
 - Verification level 2 from 10mln to 30 mln

• Mesh limits:

- Maximum face angle 165°
- Minimum face angle 15°
- Maximum volume ratio 20
- Edge lenth ratio 500

Objective function

Parameter	
Reaction	$\rho = \frac{h_1 - h_{2s}}{h_{0T} - h_{2s'}}$
Stator loss	${{f \xi }_{1}}=rac{{{h}_{1}}-{{h}_{1s}}}{{{h}_{0T}}-{{h}_{1s}}}$
Rotor loss	$\xi_2 = \frac{h_2 - h_{2s}}{h_{1T} - h_{2s}}$
Stage loss (without exit energy)	$\zeta_{12} = \frac{h_2 - h_{2s'}}{h_{0T} - h_{2s'}}$
Stage loss (with exit energy)	${{\it \xi}_{12c}}=rac{h_{2T}-h_{2s'}}{h_{0T}-h_{2s'}}$
Total to static isentropic efficiency	$\eta_{TS} = rac{h_{0T} - h_2}{h_{0T} - h_{2s'}}$
Total to total isentropic efficiency	$\eta_{TT} = \frac{h_{0T} - h_2}{h_{0T} - h_{2s} - 0.5 \times c_2^2}$

Results

$$\eta_T = 82\%$$

$$\eta_T = 86\%$$

ORIGINAL

OPTIMISED

OPTIMISED

ORIGINAL

Conclusion

- The results show an improvement of objective function
- The presented method is proper for turbine optimization
- Finding the global minimum is very difficult and timeconsuming
- Leakage and mechanical (strength, stress deformation) analysis should be performed
- Future studies should take into account new parametrization (for example – number of blades)

LWITANOWSKI@IMP.GDA.PL

www.researchgate.net/profile/Lukasz_Witanowski www.researchgate.net/profile/Piotr_Klonowicz www.researchgate.net/profile/Piotr_Lampart www.imp.gda.pl/en/o5/z1/