

The first Low Temperature Centralized Heat Supply System in Latvia: the pilot of Belava Parish - Gulbene

Dr.sc.ing. Vladimirs Kirsanovs, Riga Technical University

Dr.sc.ing. Ieva Pakere, Riga Technical University

Professor, Dagnija Blumberga, Riga Technical University

Professor, Francesco Romagnoli, Riga Technical University

- The former District heating (DH) system at Belava consisted of a wood boiler house and 9 buildings
- DH includes different groups of consumers: public buildings (i.e. local authority, kindergarten, mail), 1 cultural centre, 1 recreation building, 1 shop, 1 multifamily residential building and 4 private houses
- Public building, cultural house and shop are renovated
- Multifamily residential building is not insulated and have high heat consumption around 190 kWh/m, per year
- Existing boiler house: 1 MW fire wood boiler.

Main problem

Existing DH system was old and not effective

Heat transportation

- disproportionate DH grid
- old pipes with bad quality insulation
- heat loss in the grid ~40 %.

Main problem (II)

Heat production

- low boiler efficiency (50 60 %)
- 3 workers for wood log preparing and manual loading into boiler

Heat consumers

no heat meter for each consumer

- DH grid and building heating system are not separated with heat exchanger
- payment based on EUR/m² and not depending on consumers heat consumption
- consumers are not motivated to save heat energy
- high heat supply tariff 87.50 EUR/MWh

Aim and scope of the pilot measure

The implementation of a modern DH and smart metering system within existing buildings:

- Transformation of existing DH to LTDH to develop demonstrative pilot example
- **Provide LTDH** for two insulated buildings to three different consumer groups in Belava Parish: culture center, local government and kindergarten
- Develop a smart metering system for LTDH monitoring as base for a future integrated energy management system
- Testing of LTDH implementation strategy, weak point recognition and suggestion determination for strategies improvement
- Change of reluctant attitude towards LTDH implementation by presentation of achieved benefits
- Reduce CO2-emissions from DH system

Pilot measure timeline

Existing DH system
analysis
LTDH implementation
strategy development

2017/18

Implementation of measures

2018/19

Conclusions and recommendations for LTDH implementation at other parishes

2019/20

DH grid reconstruction and heat supply transformation

DH system optimization

Description of the implemented technology

• **Heat production** – actual heat load calculation and installation of the container type house with automatically operated 200 kW pellet boiler selection with high heat production efficiency

Description of the implemented technology (II)

Heat transportation –

• DH grid length decrease (disconnection of 4 private houses and boiler house placement closer to main heat consumers)

replace of old pipes to new industrially isolated pipelines

decrease the temperature in grid - 65°/35° for renovated buildings and 80°/60° not insulated buildings (two separate circulation loops)

Description of the implemented technology (III)

Heat consumers

- substations and heat distribution system for each consumer
- heat meter installation for consumers and ensure payment based on a heat meter readings

System monitoring

- LTDH system monitoring was organized by installation of smart metering system installation for:
 - Produced heat monitoring
 - Heat consumption monitoring
 - Indoor climate monitoring for each building
 - Outdoor temperature and solar radiation monitoring

- heat consumer monitoring

monitoring

- outdoor temperature

System optimization

- Low correlation between outside temperature and supply temperature from boiler house was identified
- The adjustment of the boiler house automation to increase the higher DH system efficiency

	2017/18	2018/19	2019/20	
Boiler house efficiency [%]	~ 55	83,7	90,3	
Heat loss at DH grid [%]	~40	4,6	3,8	
Fuel consumption [MWh/year]	1 179	470	459	
Electricity consumption, [kWh/MWh]	~20-25	10,9	10,1	
Heat supply tariff [€/MWh]	87,50	69,07	69,07	

• Cost savings per year average: 16 900 €

• Investment payback period: 11 years

House owners, apartment owners and apartment building managers:

- Reduced heating costs
- Improved indoor climate conditions

• Heat suppliers:

- Improved heat production efficiency
- Reduce heat transfer losses
- Possible integration of waste heat sources

Municipality:

- Improved DH energy management from installation of stationary and mobile smart metering systems
- Knowledge about 4th generation DH and implementation in new projects

Other municipalities:

Good practice example and action plan for LTDH implementation

Conclusions

- The pilot project implementation offers the opportunity to identify main barriers and bottlenecks for a successful realization at a larger scale.
- An in-depth analysis of the existing situation and developing a clear and tailored action is necessary for new LTDH system construction or existing DH transformation to low temperature.
- System monitoring and optimization are necessary to preclude the possibility of shortcomings.
- Pilot activities supplement the development of pilot energy strategies in municipalities and regions.
- Existence of a reluctant attitude toward LTDH implementation does to the lack of knowledge.
- In-formative campaigns are necessary to change people attitude and show a positive experience of LTDH project realization.

Dr.sc.ing. Vladimirs Kirsanovs, <u>vladimirs.kirsanovs@rtu.lv</u>

Institute of Energy Systems and Environment

Riga Technical University

